Production of 3-Benzoyl-2,1-benzisoxazoles, 2-Phenyl-4H-3,1-benzoxazin-4-ones, and Novel Quinolinone Derivatives from 2-Phenylquinolin-4(1H)-ones and Sodium Dichloroisocyanurate

Benjamin Staskun ${ }^{*, a}$ and Theodorus van Es ${ }^{b,+}$
${ }^{\text {a }}$ Department of Chemistry, University of the Witwatersrand, Johannesburg, Republic of South Africa
${ }^{\circ}$ Department of Molecular Biology and Biochemistry, Rutgers-The State University, New Jersey, 08854,
USA

A simple synthesis of certain 3-benzoyl-2,1-benzisoxazoles 6 is accomplished via treatment of the corresponding 2-phenylquinolin- $4(1 H)$-one 1 with sodium dichloroisocyanurate 2 in methanolic aq. alkali; the isomeric 2 -phenyl-4H-3,1-benzoxazin-4-one 7 is also a product. Under different conditions the same reactants furnish two new types of quinolinone derivative, viz. 3,3-dichloro-2-phenylquinolin-4(3H)-one 4 and 2-alkoxy-3.3-dichloro-2,3-dihydro-2-phenylquinolin-4(1H)-one 5, as chief products; the former is an intermediate in the synthesis of products $\mathbf{6}$ and 7 . Some of the chemical properties of the dichloro compounds 4 and 5 are described. Mechanistic pathways and proposals to explain the results and observations are presented.

Unusual transformations of 2-phenylquinolin-4(1 H$)$-ones 1 and related compounds by means of singlet oxygen, ${ }^{1}$ sodium hypochlorite, ${ }^{2}$ and sodium dichloroisocyanurate $2,{ }^{1}$ have been the subject of previous papers in this series. Recently ${ }^{3}$ we showed that when compounds 1a and 1b were separately treated with the isocyanurate 2 (2.25 molar proportions) in methanol-aq. $2 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide-water ($2: 4: 1, \mathrm{v} / \mathrm{v}$) solvent mixture for 1 h , each afforded ($\sim 30 \%$) the corresponding 3-benzoyl-2,1-benzisoxazole 6 (Scheme 1). Here we report that with use of a reduced reaction time of 10 min which does not significantly alter the yield of product 6 , but which minimizes loss of alkali-sensitive material, the synthesis also furnishes the isomeric 2 -phenyl-4 H -3,1-benzoxazin- 4 -one 7 , and that in a modified solvent system the reaction between substrates 1 and 2 provides hitherto unreported quinolinone derivatives of type 4 and 5, respectively. Exemplifying the former outcome, substrate 1b afforded compound $\mathbf{6 b}(30-35 \%)$ together with the benzoxazinone 7 b (6%) and by-products derived therefrom, viz. acid $8 \mathrm{~b}(6 \%)$, and methyl ester $9 \mathrm{~b}(5 \%)$; this is the first verified production of heterocyclic system 7 from the quinolinones 1 .

The generality of the new benzisoxazole 6 synthesis ${ }^{3}$ using the aforementioned reaction conditions (for 10 min) was examined with a number of other quinolinones 1 with the following results: substrates $\mathbf{1 c}, \mathbf{1 d}, 1 \mathrm{lf}$ and $\mathbf{1 g}$ each gave none of the benzisoxazole 6 but afforded instead the corresponding benzoxazinone $7(1.5-20 \%)$ and derived products 8 and 9 ; only substrate 1 g provided, in addition, the desired new 3-benzoyl5 -chloro-2,1-benzisoxazole $\mathbf{6 c}(4 \%)$. In the case of substrate 1 e the sole product (82%) was the novel quinolinone adduct $\mathbf{5 g}$ which with additional reagent 2 was transformed into the $3,3,6,8$-tetrachloro derivative $\mathbf{5 h}$. The above diversity of outcomes makes it evident that the current methodology succeeds, to a moderate extent, only with substrates 1 a and 1 b , and it would seem that the production of products 6 (and of 7) from reagents 1 and 2 is affected not only by the reactant stoichiometry and solvent composition (vide infra), but also by the nature and disposition of the R substituent in quinolinone 1 . It has already been demonstrated ${ }^{1}$ that treatment of compound 1b with a decreased molar proportion of reagent 2 provides principally the 3 -chloroquinolinone 3 b , while here we report that in a methanol-enriched solvent mixture [$\mathrm{MeOH}-2 \mathrm{~mol}$

[^0]$\mathrm{dm}^{-3} \mathrm{NaOH}$-water $\left.(5: 1: 1, \mathrm{v} / \mathrm{v})\right]$ the chief product from reagents 1 and 2 is adduct $5(65-75 \%)$ in a seemingly general reaction.

Members of this new class of quinolinone derivatives 5 (Table 1) exhibited a strong IR (KBr) absorption near 3350 (NH) and one near $1680(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$, and displayed the NH proton near $\delta 5.2$ in the ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum. The precursor for compound 5 c , viz. 3,3-dichloro-6-methyl-2-phen-ylquinolin- $4(3 H)$-one $\mathbf{4 b} \ddagger$ was obtained by eliminating MeOH from compound 5 c with conc. sulfuric acid, and more directly from reagents $\mathbf{1 b}$ and $\mathbf{2}$ in aq. alkali-tetrahydrofuran (THF) medium.

Exploratory investigations with substrates 4b and 5c have revealed some of their chemical potentialities. Heating of compounds 4 b and 5 c separately in ethanol gave, in each case, the EtOH adduct, viz. the 2-ethoxyquinolinone 5d, which was also derived directly from substrates 1b and 2 in EtOHcontaining solvent. Both products 4 b and 5 c suffered loss of positive chlorine ion (or equivalent species), and in the case of compound 5 c , also of MeOH , when dissolved in acidified aq. acetone to yield the 3-chloroquinolinone 3b. Application of this observation led to a satisfactory quantitative analysis of the 'available' chlorine in compound $\mathbf{4 b}$ and in several of the compounds 5 (Table 1), by iodometric analysis. The aforementioned behaviour of compounds 4 b and 5 c in dil. acid is rationalized in Scheme 2 (with 4a and 5a).

In acid-free aq. acetone solution, water effectively added across the imine function in compound $\mathbf{4 b}$; evaporation of solvent provided an unstable product, tentatively formulated as 2-hydroxyquinolinone adduct $\mathbf{5 b}$.

Treatment of compound $\mathbf{4 b}$ with reagent 2 in aq. alkali-methanol-THF solvent furnished both products 6 b and 7 b and supported the intermediacy of dichloro compound $\mathbf{4 b}$ in the synthesis of benzisoxazole 6 b from 1b; in the absence of the 'salt' 2 the product was the 3 -chloroquinolinone $\mathbf{3 b}$, and this established compound 2 as requisite in the pathway leading from 4 b on to $\mathbf{6 b}$ and $\mathbf{7 b}$. Also of mechanistic significance were the following observations: (i) Chloroform extraction of the alkaline mixture after completion of the reaction between

[^1]

Scheme 1

Scheme 2 Reagents: i, c. $\mathrm{H}_{2} \mathrm{SO}_{4}$; ii, MeOH ; iii, OH^{-}; iv, $\mathrm{H}_{3} \mathrm{O}^{+}$; v , water; vi, $2 \mathrm{I}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
reagents $\mathbf{1 b}$ and 2 in methanolic aq. alkali provided negligible quantities of compounds $\mathbf{6 b}$ and 7 b ; the products were, however, extracted following acidification. (ii) Proposed intermediate 4b (vide infra) in the aforementioned synthesis was isolated within 30 s of reaction. (iii) Treatment of compound $\mathbf{3 b}$ with an appropriate molar proportion of reagent 2 gave adduct 5 c (66%); 5c reacted further with compound 2 to yield compound $\mathbf{6 b}(34 \%)$. (iv) Compounds $\mathbf{6 a}$ and 7 a did not interconvert under the standard conditions $(10 \mathrm{~min})$ and were recovered
unchanged. By comparison, benzisoxazole 6b was isomerized to the corresponding benzoxazine $\mathbf{7 b}$ in refluxing acetic anhydride-pyridine mixture, and on heating in the absence of solvent, as had previously ${ }^{5.6}$ been demonstrated in the case of substrate 6a. The isomerization of compounds $\mathbf{6 a}$ and $7 \mathbf{7 a}$ occurs also in the gas phase, ${ }^{5}$ and in this respect it is noteworthy that the mass spectra (70 eV) of benzisoxazoles 6 b and 6 c exhibited loss of a prominent $m / z 44\left(\mathrm{CO}_{2}\right)^{7}$ fragment, which is suggestive of the production of species 7 during the electron-impact process. (v) Access to compound $\mathbf{6 a}$ and to compound $\mathbf{6 b}$ from substrates 1a and 1b, respectively, was achieved also, albeit in lower yields ($\sim 13 \%$) with sodium hypochlorite as reagent, and with reagent 2 in a solely aq. alkaline (heterogeneous) medium, thus substantiating the role of chlorinium ion and obviating that of MeOH in the reaction pathway.

Reaction Mechanism.-Taking cognisance of the above, we explain the formation of compounds $4,5,6$ and 7 from reagents 1 and 2 by the mechanism shown (with 1a) in Scheme 3. Isolable ${ }^{1}$ intermediate $3 a$ may derive from substrates $\mathbf{1 a}$ and 2 either (i) via an N-chloro ${ }^{8-10}$ derivative \mathbf{A} which subsequently undergoes a $1,3-\mathrm{Cl}$ migration, ${ }^{8}$ or (ii) from direct electrophilic substitution by compound 2 (or equivalent species) at $\mathbf{C}-3$ of the enamine-like substrate 1 (or its anion). In any event repetition of the chlorination process with compound 3a as substrate via route (i) and/or (ii) rapidly furnishes the dichloro compound $\mathbf{4 a}$. The latter compound is then competitively attacked by MeOH in the solvent to give compound 5 a , and by OH^{-}and substrate 2 to provide, initially, moiety \mathbf{B} (analogous to adduct $\mathbf{5 b}$) and eventually, via a sequence of reactions including a semibenzilic rearrangement, ${ }^{11}$ intermediate \mathbf{C}, assigned the role of common precursor for both products 6 and

Table 1 Physical data for compounds 5 and 6

Compound M.p. $\left({ }^{\circ} \mathrm{C}\right)$	\% Found/(\% Required)				$v_{\text {max }} / \mathrm{cm}^{-1}$	$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$	m / z
	C	H	N	$\mathrm{Cl}^{\text {a }}$			
5a 135				$\begin{aligned} & 10.3 \\ & (11.00) \end{aligned}$	$\begin{aligned} & 3325,1680, \\ & 1615 \end{aligned}$	$3.08(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.39(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 6.84(1 \mathrm{H}, \mathrm{d}$, $J 8,8-\mathrm{H}), 7.0(1 \mathrm{H}, \mathrm{t}, J 8,6-\mathrm{H}), 7.4-7.55(4 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.8-7.85(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.0(1 \mathrm{H}, \mathrm{dd}, J 1.4$ and 8, 5-H)	
5b 111-113				$\begin{gathered} 10.4 \\ (11.00) \end{gathered}$	$\begin{aligned} & 3400-3300, \\ & 1690,1680 \\ & 1620 \end{aligned}$	2.32 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), $3.24(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$, removed by $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.15\left(1 \mathrm{H}\right.$, brs, NH , removed by $\left.\mathrm{D}_{2} \mathrm{O}\right), 6.68(1$ $\mathrm{H}, \mathrm{d}, J 8,8-\mathrm{H}), 7.3(1 \mathrm{H}, \mathrm{dd}, J 2$ and $8,7-\mathrm{H}), 7.5(3 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.8-7.9(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})^{a}$	
5c 137-138	$\begin{aligned} & 60.5 \\ & (60.73) \end{aligned}$	$\begin{gathered} 4.4 \\ (4.50) \end{gathered}$	$\begin{gathered} 4.2 \\ (4.17) \end{gathered}$	$\begin{aligned} & 10.4 \\ & (10.55) \end{aligned}$	$\begin{aligned} & 3350,1680, \\ & 1620 \end{aligned}$	2.33 ($3 \mathrm{H}, \mathrm{s}$, ArMe), 3.07 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $5.29(1 \mathrm{H}$, br s, NH), $6.76(1 \mathrm{H}, \mathrm{d}, J 8,8-\mathrm{H}), 7.31(1 \mathrm{H}, \mathrm{dd}, J 2$ and 8, 7-H), 7.5 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.8 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$)	
5d 152-154	$\begin{aligned} & 61.6 \\ & (61.73) \end{aligned}$	$\begin{gathered} 4.8 \\ (4.89) \end{gathered}$	$\begin{aligned} & 4.0 \\ & (4.00) \end{aligned}$		$\begin{aligned} & 3325,1680, \\ & 1620,1585, \\ & 1500 \end{aligned}$	1.06 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{Me}$), 2.32 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 3.09-3.39 (2 H , symmetrical 9-line $\mathrm{m}, \mathrm{OCH}_{2} \mathrm{Me}$), $5.25(1 \mathrm{H}, \mathrm{br} s, \mathrm{NH}), 6.72(1 \mathrm{H}, \mathrm{d}, J 8,8-\mathrm{H}), 7.3(1 \mathrm{H}$, dd, $J 2$ and $8,7-\mathrm{H})$, $7.5(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.8(3 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})^{b}$	$\begin{aligned} & 349\left(\mathrm{M}^{+}\right), \\ & 314 \\ & (\mathrm{M}-35), \\ & 303,269 \end{aligned}$
Se 135-136					3440,1695	2.28 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 3.02 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $5.14(1 \mathrm{H}, \mathrm{s}$, NH), $6.91(1 \mathrm{H}, \mathrm{t}, J 8,6-\mathrm{H}), 7.37(1 \mathrm{H}, \mathrm{d}, J 7,7-\mathrm{H})$, 7.5-7.6 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.8-8.0 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$)	
5f 132-133	$\begin{aligned} & 61.4 \\ & (61.73) \end{aligned}$	$\begin{gathered} 4.75 \\ (4.89) \end{gathered}$	$\begin{aligned} & 4.0 \\ & (4.00) \end{aligned}$		$\begin{aligned} & 3430,1700, \\ & 1610 \end{aligned}$	2.25 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 2.30 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 3.01 ($3 \mathrm{H}, \mathrm{s}$, OMe), $5.04(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.21(1 \mathrm{H}, \mathrm{d}, J 0.6,7-\mathrm{H})$, $7.5-7.6(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.73(1 \mathrm{H}, \mathrm{d}, J 0.6,5-\mathrm{H}), 7.8-$ 7.9 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$)	
5g 130-131	$\begin{aligned} & 61.6 \\ & (61.73) \end{aligned}$	$\begin{aligned} & 4.65 \\ & (4.89) \end{aligned}$	$\begin{gathered} 4.0 \\ (4.00) \end{gathered}$	$\begin{gathered} 9.9 \\ (10.12) \end{gathered}$	$\begin{aligned} & 3350,1678, \\ & 1615 \end{aligned}$	2.31 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 2.64 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 3.10 ($3 \mathrm{H}, \mathrm{s}$, OMe), 5.27 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$), 6.49 ($1 \mathrm{H}, \mathrm{d}, J 0.6, \mathrm{ArH}$), $6.60(1 \mathrm{H}, \mathrm{d}, J 0.6, \mathrm{ArH}), 7.5(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.8(2 \mathrm{H}$, m, ArH)	
5h 148-149	$\begin{gathered} 51.65 \\ (51.58) \end{gathered}$	$\begin{gathered} 3.5 \\ (3.61) \end{gathered}$	$\begin{gathered} 3.3 \\ (3.34) \end{gathered}$		3390, 1705	2.60 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 2.77 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 3.08 ($3 \mathrm{H}, \mathrm{s}$, OMe), 6.0 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$), 7.53 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.82 (2 $\mathrm{H}, \mathrm{m}, \mathrm{ArH}$)	417 (${ }^{+}$)
6a 95					$\begin{aligned} & 1645,1622, \\ & 1595,1575, \\ & 1555,1520 \end{aligned}$	$\begin{aligned} & 7.27-7.8(6 \mathrm{H}, \mathrm{~m}, \mathrm{ArH}), 8.1-8.2(1 \mathrm{H}, \mathrm{~m}, \mathrm{ArH}), 8.3(3 \\ & \mathrm{H}, \mathrm{~m}, \operatorname{ArH}) \end{aligned}$	
6b 114-115	$\begin{gathered} 75.9 \\ (75.93) \end{gathered}$	$\begin{aligned} & 4.6 \\ & (4.67) \end{aligned}$	$\begin{aligned} & 5.9 \\ & 5.91 \end{aligned}$		$1645 \mathrm{~s}, 1625 \mathrm{~m}$, 1596m, 1575w, $1555 \mathrm{~m}, 1451 \mathrm{~s}$, 1355 s , 1275 s , 1236s, 1189w, $1180 \mathrm{~m}, 895 \mathrm{~s}$	$2.45(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 7.28(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and $9,6-\mathrm{H})$, 7.5-7.7 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.9 ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), 8.3 ($2 \mathrm{H}, \mathrm{m}$, ArH)	$\begin{aligned} & 237\left(\mathrm{M}^{+}\right), 193 \\ & (\mathrm{M}-44), 160 \\ & (\mathrm{M}-77), 105 \\ & 77,51 \end{aligned}$
6c 115-116	$\begin{gathered} 64.9 \\ (65.26) \end{gathered}$	$\begin{gathered} 3.0 \\ (3.13) \end{gathered}$	$\begin{gathered} 5.35 \\ (5.44) \end{gathered}$		$\begin{aligned} & 1650,1620, \\ & 1595 \end{aligned}$	$7.38(1 \mathrm{H}, \mathrm{dd}, J 2$ and $9, \mathrm{ArH}), 7.55-7.78(4 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 8.2(1 \mathrm{H}, \mathrm{d}, J 2,4-\mathrm{H}), 8.28-8.34(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$	$\begin{aligned} & 257\left(\mathrm{M}^{+}\right), 213 \\ & (\mathrm{M}-44), 180 \\ & (\mathrm{M}-77), 124, \\ & 105,77,51 \end{aligned}$

${ }^{a}$ Percentage of 'available' chlorine. ${ }^{b}$ The spectrum, following addition of $\mathrm{D}_{2} \mathrm{O}$ to the CDCl_{3} solution and prolonged storage, was drastically altered.
7. It is further proposed that intermediate \mathbf{C} is acted on by OH^{-} to generate two alkali-soluble intermediates \mathbf{D} and \mathbf{E} which separately give rise to product 6 and product 7, respectively, as outlined in the Scheme 3. This mechanism stresses the importance of both substrate 2 and OH^{-}in the synthesis, emphasizes the key role of intermediate 4, makes provision for steric impedance to approach of reagent 2 and/or OH^{-}in the R-substituted moiety \mathbf{B} and species arising thereafter, thereby influencing to different extents the yields of products 6 and 7, and rationalizes the observation that both compounds 6 and 7 become isolable subsequent to acidification of the reaction mixture.

In summary, we have extended the scope of 2-phenylquin-olin-4($1 H$)-one 1 chemistry by demonstrating that certain quinolinones 1 on treatment with sodium dichloroisocyanurate 2 in methanolic aq. alkali medium are transformed into a mixture of the corresponding 3-benzoyl-2,1-benzisoxazole 6 and 2 -phenyl- 4 H -3,1-benzoxazin-4-one 7 . The current methodology, is as yet not of general application and remains to be optimized, but nevertheless offers a simple and relatively rapid entry to the interesting benzisoxazole 6 heterocyclic system. We also show that the same reactants under different conditions
provide hitherto unreported types of quinolinone derivatives, viz. species 4 and 5, and have also attempted to explain how products 6 and $\mathbf{7}$ derive from substrates 1 and 2 via intermediate 4 , and from a postulated common precursor C.

Experimental

General.-M.p.s were taken on a Kofler hot-stage apparatus and are uncorrected. IR spectra (KBr disc) were obtained on a Pye-Unicam SP3-300 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AC 200 MHz instrument for solutions in CDCl_{3} with SiMe_{4} as internal standard. J-Values are given in Hz . Mass spectra were measured on a Varian MAT CH7 spectrometer at 70 eV . Column chromatography was on Merck Kieselgel 60 ($70-230$ mesh) with benzene as eluent. TLC was performed on plastic plates (Merck, silica gel $60 \mathrm{~F}_{254}$) with the same solvent, and compounds were visualized under UV light and/or in an iodine chamber.

Materials.-Sodium dichloroisocyanurate 2 (Hunter Chemicals, purity 93%) was used as purchased. Quinolinones la-g were prepared by condensation of the appropriate arylamine

Scheme 3 Reagents: $\mathrm{i}, \mathrm{OH}^{-}, 2$; ii, OH^{-}; iii, $\mathrm{H}_{3} \mathrm{O}^{+}$; iv, [O]; v, MeOH , OH^{-}
with ethyl benzoylacetate in polyphosphoric acid PPA. ${ }^{12}$ 3-Chloro-6-methyl-2-phenylquinolinone 3b was synthesized from substrates 1b and 2. ${ }^{1}$ Benzoxazinones 7a-d, f were obtained either by reflux of the appropriate 2-benzamidobenzoic acid $\mathbf{8}$ with acetic anhydride, ${ }^{13}$ or from the 2 -aminobenzoic acid and benzoyl chloride in pyridine. ${ }^{14}$ Methyl esters 9 were derived from acids 8 and diazomethane, or from lactones 7 in MeOH containing a trace of sodium methoxide. The requisite acids 8 were accessed from the appropriate quinolinones 1 by oxidative cleavage with singlet oxygen, ${ }^{15}$ or from the 2 -aminobenzoic acid and benzoyl chloride in aq. NaOH . Authentic benzisoxazole 6 a was synthesized from 2-nitrobenzaldehyde and benzylpyridinium bromide via 2-phenylisatogen formation and isomerization. ${ }^{3}$ The currently measured physical and spectroscopic data of the aforementioned compounds 6a, 8, 9 and reference benzoxazinones 7 (crystals from $\mathbf{M e O H}$) accorded with literature values and are listed here for the latter compounds. Compound 7a: m.p. $122-123{ }^{\circ} \mathrm{C}$ (lit., ${ }^{16} 123^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}} 7.45-7.63(4 \mathrm{H}, \mathrm{m}), 7.66-7.72(1 \mathrm{H}, \mathrm{m}), 7.77-7.87(1 \mathrm{H}, \mathrm{m})$ and 8.2-8.35 ($3 \mathrm{H}, \mathrm{m}$); compound 7b: m.p. $142-143^{\circ} \mathrm{C}$ (lit., ${ }^{16}$ $140^{\circ} \mathrm{C}$; lit., ${ }^{13} 143-148^{\circ} \mathrm{C}$); $v_{\text {max }} / \mathrm{cm}^{-1} 1755(\mathrm{C}=0), 1630$ and 1610; $\delta_{\mathrm{H}} 2.49$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), $7.46-7.67$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 8.04 ($1 \mathrm{H}, \mathrm{d}, J 2,5-\mathrm{H}$) and $8.3(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; compound 7 c : m.p. $121-122^{\circ} \mathrm{C}$ (lit., $\left.{ }^{17} \quad 124-125^{\circ} \mathrm{C}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 1775(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}$ $2.66(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 7.35-7.7(5 \mathrm{H}, \mathrm{m}), 8.08(1 \mathrm{H}, \mathrm{dd}, J 1$ and 8 , $5-\mathrm{H})$ and $8.34(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; compound 7 d : m.p. $145{ }^{\circ} \mathrm{C}$; δ_{H} 2.43 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 2.62 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), $7.5(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.88 ($1 \mathrm{H}, \mathrm{d}, J 1.4,4-\mathrm{H}$) and 8.3 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) (Found: C, 76.5; H, 5.1; $\mathrm{N}, 5.6 . \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{2}$ requires $\mathrm{C}, 76.48 ; \mathrm{H}, 5.21 ; \mathrm{N}, 5.58 \%$); compound 7e: m.p. $146-147^{\circ} \mathrm{C}$ (lit., ${ }^{16} 142^{\circ} \mathrm{C}$); $v_{\text {max }} / \mathrm{cm}^{-1} 1740$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 3.94(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.38-7.67(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 8.3
(2 H, m, ArH); compound 7f: m.p. $195{ }^{\circ} \mathrm{C}$ (lit., ${ }^{18} 195-197{ }^{\circ} \mathrm{C}$); $v_{\max } / \mathrm{cm}^{-1} 1755(\mathrm{C}=\mathrm{O})$ and 1618; $\delta_{\mathrm{H}} 7.48-7.82(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 8.2-8.3 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Each reaction product 7-9 in this work was identified from spectral (IR and/or ${ }^{1} \mathrm{H}$ NMR) and/or mixed m.p. comparison with authentic material. No serious attempts were made to optimize the yields of products 6 or 7 in the reaction $1+$ $2 \rightarrow 6+7$.

Estimation of 'Available' Chlorine in Compounds 4b and 5.A solution of compound $\mathbf{4 b}$ or $5(\sim 30 \mathrm{mg}$, accurately weighed) in a mixture of glacial acetic acid ($5 \mathrm{~cm}^{3}$) and ethanol $\left(5 \mathrm{~cm}^{3}\right)$ containing KI (1 g) was stirred at room temperature for 5 min and then titrated with standardized ($0.1 \mathrm{~mol} \mathrm{dm}^{-3}$) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (to a starch end-point). ${ }^{19}$ The percentage of Cl reported is the average of two determinations.

The Benzisoxazole 6a and the Benzoxazinone 7a from the Quinolinone 1a and Compound 2.-Sodium dichloroisocyanurate $2(1.10 \mathrm{~g}, 5.0 \mathrm{mmol})$ was added in one portion to a stirred solution of compound $1 \mathrm{a}(500 \mathrm{mg}, 2.26 \mathrm{mmol})$ in $\mathrm{MeOH}(14$ cm^{3}), $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}\left(28 \mathrm{~cm}^{3}\right.$), and water ($7 \mathrm{~cm}^{3}$); the reagent granules gradually dissolved, and the reaction was accompanied by a mild exothermic effect and the immediate appearance of a yellow colour which eventually faded. After 10 min the alkaline mixture was chilled $\left(\sim 10^{\circ} \mathrm{C}\right)$ and, while being stirred, was acidified with conc. $\mathrm{HCl}\left(\sim 7 \mathrm{~cm}^{3}\right)$; brown-coloured material separated during the acidification, and the mixture was stirred for another 30 min . Extraction $\left(\mathrm{CHCl}_{3}\right)$ of the mixture just prior to acidification afforded a minor amount of a gum having the odour of benzaldehyde, and containing negligible amounts of compounds 6a and 7a (by TLC). Products 6a, 7a and 9 a were isolated by chromatography (method A, vide infra); if compound 6a only was required it was more rapidly accessed by method B.

Method A. The aforementioned brown-coloured material was extracted with CHCl_{3}, and the extract was shaken with saturated aq. NaHCO_{3}, then washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Chromatography of the residue provided (in order of elution) 3-benzoyl-2,1-benzisoxazole $6 \mathbf{a}$ ($155 \mathrm{mg}, 31 \%$), 2-phenyl-4 H -3,1-benzoxazin-4-one 7 a (28 mg , $\sim 6 \%$), and methyl 2-benzamidobenzoate $9 \mathrm{a}(26 \mathrm{mg})$. Acidification of the NaHCO_{3} extract with conc. HCl provided 2-benzamidobenzoic acid 8a.

Method B. The aforementioned brown material was collected by filtration, washed with water, and stirred with a mixture of MeOH ($7 \mathrm{~cm}^{3}$), $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}\left(7 \mathrm{~cm}^{3}\right)$, and water ($7 \mathrm{~cm}^{3}$) at room temperature for 15 min to remove the alkali-reactive (7a) and alkali-soluble (8a) components. Filtration of the chilled ($\sim 10^{\circ} \mathrm{C}$) reaction afforded the sparingly soluble product $\mathbf{6 a}$ ($180 \mathrm{mg} ; \sim 36 \%$) associated with a minor proportion of MeOHinsoluble impurity.
Quinolinones 1b-g (500 mg) were treated with compound 2 (1.10 g) under similar conditions to those above and the following products were obtained (method A; Table 1).

Compound 1b gave 3-benzoyl-5-methyl-2,1-benzisoxazole 6b* (30-35\%), 6-methyl-2-phenyl-4H-3,1-benzoxazin-4-one 7b (6%), and methyl 2-benzamido- 5 -methylbenzoate 9 b (5%), while 2-benzamido-5-methylbenzoic acid 8b was obtained from the NaHCO_{3} wash. A solution of the benzisoxazole $6 \mathrm{~b}(100 \mathrm{mg})$ in $\mathrm{CHCl}_{3}\left(2 \mathrm{~cm}^{3}\right)$ was covered with hexane ($8 \mathrm{~cm}^{3}$), seeded with a crystal of compound 6b, and the two-phase system was allowed to evaporate slowly (over several days). The residue of fine needles included a number of substantial, yellow crystals of compound $6 \boldsymbol{6}$ (IR spectrum), which were separated and utilized

[^2]for an X-ray structure determination. ${ }^{3}$ Other observations with compound 1b (500 mg) are as follows: (i) In the course of the synthesis of compound $\mathbf{6 b}$ (vide supra) an aliquot $\left(1 \mathrm{~cm}^{3}\right)$ of the reaction mixture was removed 30 s after addition of the reagent 2, and extracted with EtOH -free CHCl_{3}; evaporation of the washed (water) and dried $\left(\mathrm{MgSO}_{4}\right)$ extract gave a residue rich in compound 4b (vide infra) (TLC, benzene).
(ii) Reagent $2(1.1 \mathrm{~g}, 5.0 \mathrm{mmol})$ was added in one portion to a stirred, heterogeneous mixture of compound $\mathbf{1 b}(500 \mathrm{mg}, 2.13$ mmol) in $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}\left(10 \mathrm{~cm}^{3}\right)$-water ($20 \mathrm{~cm}^{3}$); the mixture developed a brown colour and the odour of benzaldehyde within minutes. At the end of 20 min , water $\left(10 \mathrm{~cm}^{3}\right)$ was added and the alkaline reaction was extracted with CHCl_{3} to afford a gum ($20-30 \mathrm{mg}$) containing little, if any, of compound 6b or 7b (TLC, benzene). Acidification (conc. HCl) of the stirred alkaline aq. phase led to separation of a product ($\sim 200 \mathrm{mg}$) from which was isolated (method A) compound $\mathbf{6 b}$ ($67 \mathrm{mg}, \sim 13 \%$).
(iii) To a solution of compound 1 b (500 mg) in $2 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{NaOH}\left(25 \mathrm{~cm}^{3}\right.$)-water ($35 \mathrm{~cm}^{3}$) was added $\sim 2 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{NaOCl}\left(14 \mathrm{~cm}^{3}, \sim 28 \mathrm{mmol}\right)$ in one portion and the mixture was stirred for 30 min . The chilled $\left(\sim 10^{\circ} \mathrm{C}\right)$ reaction was acidified (conc. HCl) and the brown gum which gradually separated (30 min) was extracted into CHCl_{3} to afford $(\operatorname{method} \mathrm{A})$ the benzisoxazole 6 b ($68 \mathrm{mg}, 13 \%$) and the benzoxazinone 7 b (20 mg).

Compound 1c gave 3,3-dichloro-2,3-dihydro-2-methoxy-8-methyl-2-phenylquinolin-4(1H)-one 5e, which separated from the reaction mixture and was collected by filtration (65 mg). Acidification of the filtrate provided (method A) 8-methyl-2-phenyl-4 H -1,3-benzoxazin-4-one 7c (39 mg), and the acid 8 c , which was converted with $\mathrm{Ac}_{2} \mathrm{O}$ into compound $7 \mathrm{c}(157 \mathrm{mg})$.

Compound 1d (after reaction for 75 min) gave 6,8 -dimethyl-2-phenyl-4 H -3,1-benzoxazin-4-one $7 \mathrm{~d}(\mathbf{2 6 ~ m g})$ and acid 8 d (59 mg).

Compound 1e gave 3,3-dichloro-2,3-dihydro-2-methoxy-5,7-dimethyl-2-phenylquinolin- $4(1 \mathrm{H})$-one 5 g , which separated from the reaction mixture $(0.58 \mathrm{~g}, 82 \%)$. To a stirred solution of compound $5 \mathrm{~g}(1.50 \mathrm{~g})$ in $\mathrm{MeOH}\left(150 \mathrm{~cm}^{3}\right)$ was added 2 mol $\mathrm{dm}^{-3} \mathrm{NaOH}\left(15 \mathrm{~cm}^{3}\right)$ followed by a solution of compound 2 $(1.8 \mathrm{~g})$ in water $\left(12 \mathrm{~cm}^{3}\right)$. After reaction for 10 min , insoluble material was collected by filtration, washed with hot water, dried (over $\mathrm{P}_{2} \mathrm{O}_{5}$), and chromatographed to provide 3,3,6,8-tetrachloro-2,3-dihydro-2-methoxy-5,7-dimethyl-2-phenylquino-lin-4-(1H)-one 5h ($237 \mathrm{mg}, 13 \%$).

Compound $1 f$ gave 6-methoxy-2-phenyl-4 H -3,1-benzoxazin4 -one $7 \mathrm{e}\left(7 \mathrm{mg}, 1.5 \%\right.$) and the acid 8 f (converted with $\mathrm{Ac}_{2} \mathrm{O}$ into compound 7e).

Compound 1g gave 3-benzoyl-5-chloro-2,1-benzisoxazole 6c (4%), 6-chloro-2-phenyl-4H-3,1-benzoxazin-4-one 7f (20%), methyl 2-benzamido-5-chlorobenzoate 9 g (5%), and 2-benz-amido-5-chlorobenzoic acid 8 g .

Isomerization of Benzisoxazoles 6a, 6b into Benzoxazinones 7a, 7b.-(i) In solution. A solution of compound $\mathbf{6 b}(300 \mathrm{mg})$ in a mixture of pyridine $\left(8 \mathrm{~cm}^{3}\right)$ and acetic anhydride $\left(2.5 \mathrm{~cm}^{3}\right)$ was refluxed ($\sim 115^{\circ} \mathrm{C}$) for 4 days; there was minor change before 24 h (TLC, benzene), and $\sim 50 \%$ conversion at the end. Evaporation of solvent gave a residue, which was chromatographed (benzene) to obtain the benzoxazinone $7 \mathrm{bb}(65 \mathrm{mg}$) and unchanged substrate $\mathbf{6 b}(95 \mathrm{mg})$.
(ii) In the absence of solvent. The benzisoxazole $\mathbf{6 a}(60 \mathrm{mg})$ was gradually heated up to $200^{\circ} \mathrm{C}$ during which period samples were taken at intervals for analysis (TLC, benzene): $120-125^{\circ} \mathrm{C}$ (1 h), no change; $145-150^{\circ} \mathrm{C}(30 \mathrm{~min})$, no change; $170-175^{\circ} \mathrm{C}$ (30 min), 7a detected; $195-200^{\circ} \mathrm{C}(\sim 5 \mathrm{~h}$), a mixture of $\mathbf{6 a}$ and 7a. Separation on a column provided uncontaminated samples of compound $7 \mathrm{a}(15 \mathrm{mg})$ and unchanged substrate $\mathbf{6 a}(20 \mathrm{mg})$.

Preparation of 2-Alkoxy-3,3-dichloro-2,3-dihydro-2-phenyl-quinolin- $4(1 \mathrm{H})$-ones 5 .-The general procedure is illustrated for compound 5 c ; reagent $2(1.10 \mathrm{~g}, 5.0 \mathrm{mmol})$ was added in one portion to a stirred solution of the quinolinone $1 \mathrm{~b}(500 \mathrm{mg}, 2.13$ mmol) in a mixture of $\mathrm{MeOH}\left(25 \mathrm{~cm}^{3}\right), 2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}$ ($5 \mathrm{~cm}^{3}$), and water ($5 \mathrm{~cm}^{3}$). After 10 min water $\left(20 \mathrm{~cm}^{3}\right)$ was added and the sparingly soluble solid 5 c was collected and washed on the filter with hot ($\sim 90^{\circ} \mathrm{C}$) water ($530 \mathrm{mg}, 74 \%$). The physical properties of compound 5 c and of the other compounds 5 similarly obtained are listed in Table 1. Use of a lesser $(0.90 \mathrm{~g}, 4.1 \mathrm{mmol})$ or greater $(1.30 \mathrm{~g}, 5.9 \mathrm{mmol})$ amount of reagent 2 in the reaction with compound 1 b gave compound 5 c in reduced yield (390 and 420 mg , respectively). With EtOH ($25 \mathrm{~cm}^{3}$) in place of MeOH in the general procedure, reagent 1 b provided 3,3-dichloro-2-ethoxy-2,3-dihydro-6-methyl-2-phenyl-quinolin- $\mathbf{4}(1 \mathrm{H})$-one $5 \mathrm{~d}(60-70 \%$; Table 1). Treatment of the 3chloroquinolinone 3 b ($2.00 \mathrm{~g}, 7.42 \mathrm{mmol}$) with reagent $2(2.25 \mathrm{~g}$, 10.2 mmol) in the aforementioned $\mathrm{MeOH}-2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}_{-}$ water mixture ($140 \mathrm{~cm}^{3}$) for 90 min gave compound 5 c in comparable yield ($1.65 \mathrm{~g}, 66 \%$); the combined filtrate and washings was acidified (conc. HCl) and allowed to evaporate slowly, when the benzisoxazole $6 \mathrm{~b}\left(40 \mathrm{mg}\right.$, m.p. $104-114^{\circ} \mathrm{C}$) gradually separated.

3,3-Dichloro-6-methyl-2-phenylquinolin-4(3H)-one 4b.-

Method a. A solution of adduct $5 \mathrm{c}(200 \mathrm{mg})$ in conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ ($3 \mathrm{~cm}^{3}$) was kept at room temperature for 1 h (negligible Cl_{2} and/or HCl was evolved), and then poured onto ice. The yellow solid which precipitated was collected by filtration, washed with water, and dried (over $\mathrm{P}_{2} \mathrm{O}_{5}$) [183 mg ; TLC (benzene) showed a mixture rich in compound $4 \mathrm{~b}\left(R_{\mathrm{f}} \sim 0.7\right)$; no substrate 5 c remained]. Chromatography (benzene) provided title compound $\mathbf{4 b}$ (75 mg , virtually free from contaminants): yellow crystals from CHCl_{3}-hexane, m.p. $125-126^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 1700 \mathrm{~s}$ ($\mathrm{C}=0$), $1605 \mathrm{w}, 1585 \mathrm{~m}$ and $1565 \mathrm{w} ; \delta_{\mathrm{H}} 2.48(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe})$, $7.4-7.65(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.95(1 \mathrm{H}, \mathrm{d}, J 1,5-\mathrm{H})$ and $8.2-8.3(2 \mathrm{H}, \mathrm{m}$, ArH); m/z $303\left(\mathrm{M}^{+}, 2 \mathrm{Cl}\right),{ }^{*} 268(\mathrm{M}-35, \mathrm{Cl})^{*}$ and $240(268-$ $\mathrm{CO}, \mathrm{Cl})^{*}$ [Found: $\mathrm{C}, 62.0 ; \mathrm{H}, 3.7 ; \mathrm{N}, 4.5 ; \mathrm{Cl}$ (available), 11.0. $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}$ requires $\mathrm{C}, 63.18 ; \mathrm{H}, 3.64 ; \mathrm{N}, 4.61 ; \mathrm{Cl}$, 11.66%].
Method b. Reagent $2(1.20 \mathrm{~g}, 5.45 \mathrm{mmol})$ was added in one portion to a stirred mixture of the quinolinone $\mathbf{1 b}(500 \mathrm{mg}, 2.13$ mmol), THF $\dagger\left(25 \mathrm{~cm}^{3}\right)$ and $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}\left(10 \mathrm{~cm}^{3}\right)$; reaction was accompanied by a mild exothermic effect. After 30 min water ($30 \mathrm{~cm}^{3}$) was added and the mixture was extracted with alcohol-free CHCl_{3}. The organic phase was washed successively with saturated aq. NaHCO_{3} and water, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give an orange syrup $[680 \mathrm{mg}$, rich in compound 4 b and containing negligible amounts of compounds 6 b and 7 b (TLC, benzene)] from which the last vestiges of solvent proved difficult to remove even in vacuo. Addition of MeOH to the syrup gave adduct 5 c ; on prolonged storage the product $\mathbf{4 b}$ in the syrup was converted into the 3 -chloroquinolinone $\mathbf{3 b}$.

The following exploratory reactions [(i)-(v)] with compounds $\mathbf{4 b}$ (Method a) and 5c are described: (i) Refluxing of compound 4 b or 5 c in EtOH solution for 1 h , followed by evaporation of solvent, gave adduct 5 d in almost quantitative yield.
(ii) A solution of compound $\mathbf{4 b}(100 \mathrm{mg})$ in acid-free (reagent

[^3]grade) acetone-water ($5 \mathrm{~cm}^{3} ; 20: 1 \mathrm{v} / \mathrm{v}$) was allowed to evaporate slowly (overnight); the residue consisted principally (TLC, benzene) of highly reactive 3,3-dichloro-2,3-dihydro-2-hydroxy-6-methyl-2-phenylquinolin-4-($1 H$)-one 5 b (Table 1).
(iii) To a solution of compound $4 \mathrm{~b}(25 \mathrm{mg})$ or $5 \mathrm{c}(25 \mathrm{mg})$ in reagent-grade acetone ($2 \mathrm{~cm}^{3}$) was added one drop ($\sim 0.05 \mathrm{~cm}^{3}$) of $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$; crystals of the 3 -chloroquinolinone $\mathbf{3 b}$ began to separate within minutes and were collected by filtration ($\sim 15 \mathrm{mg}$) after 30 min .
(iv) To a stirred mixture of compound $5 \mathrm{c}(500 \mathrm{mg}, 1.5 \mathrm{mmol})$, $\mathrm{MeOH}\left(75 \mathrm{~cm}^{3}\right)$, and $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}\left(10 \mathrm{~cm}^{3}\right)$ was added reagent $2(0.50 \mathrm{~g}, 2.3 \mathrm{mmol})$, and after 30 min insoluble, reagentderived material was separated. The filtrate was similarly treated with additional reagent $2(0.50 \mathrm{~g})$, after which the filtered mixture was cooled ($\sim 10^{\circ} \mathrm{C}$), acidified (conc. HCl), and extracted with CHCl_{3}. Evaporation of the washed (saturated aq. NaHCO_{3}, water) and dried $\left(\mathrm{MgSO}_{4}\right)$ extract afforded an orange gum [$\sim 300 \mathrm{mg}$, rich in compound 6 b (TLC)], which was triturated with cold MeOH to provide sparingly soluble compound 6 b (120 mg ; IR spectrum). In the absence of reagent 2 , the reaction yielded the 3 -chloroquinolinone $3 \mathrm{~b}(30-45 \%)$.
(v) A solution of compound $\mathbf{4 b}(500 \mathrm{mg})$ in peroxide-free THF* ($15 \mathrm{~cm}^{3}$) was added (5 min) to a stirred mixture of $\mathrm{MeOH}\left(13 \mathrm{~cm}^{3}\right), 2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}\left(27 \mathrm{~cm}^{3}\right)$, water ($6 \mathrm{~cm}^{3}$), and reagent $2(1.1 \mathrm{~g})$. Reaction for (a total of) 15 min afforded [method A (vide supra)] compounds $\mathbf{6 b}(92 \mathrm{mg}), 7 \mathrm{~b}(17 \mathrm{mg})$, acid 8 b (70 mg), and methyl ester $9 \mathrm{~b}(70 \mathrm{mg})$. In the absence of reagent 2 , the reaction gave the 3 -chloroquinolinone $3 \mathrm{~b}(47 \%)$ and no compound 6 b or $\mathbf{7 b}$.

Acknowledgements

B. S. is grateful to the Senate Research Council of the University of the Witwatersrand and to the CSIR, Pretoria, for financial

* 'Old' (i.e., peroxide-containing) THF was utilized. The yield of product $\mathbf{4 b}$ appears to depend on the peroxide content of the solvent, and this aspect remains to be clarified. Hence, reaction in peroxide-free THF led to diminished yields of compound $\mathbf{4 b}$ and a concomitantly enhanced production of compound $\mathbf{6 b}$ and $\mathbf{7 b}$.
support, and thanks Dr. L. Carlton and Mrs. S. Heiss for the ${ }^{1} \mathrm{H}$ NMR spectra.

References

1 B. Staskun, J. Org. Chem., 1988, 53, 5287.
2 J. C. A. Boeyens, L. Denner, J. L. C. Marais and B. Staskun, S. Afr. J. Chem., 1986, 39, 221.
3 A Preliminary account of some of the findings has appeared: B. Staskun, T. van Es, D. G. Billing and J. C. A. Boeyens, J. Chem. Soc., Chem. Commun., 1991, 927.
4 K. Schofield and T. Swain, J. Chem. Soc., 1950, 384.
5 J. L. Pinkus, H. A. Jessup and T. Cohen, J. Chem. Soc. C, 1970, 242.

6 R. K. Smalley, in Advances in Heterocyclic Chemistry, ed. A. R. Katritzky and A. J. Boulton, Academic Press, New York, 1981, vol. 29, p. 34.
7 D. R. Eckroth, Chem. Commun., 1970, 465.
8 M. De Rosa, L. Carbognani and A. Febres, J. Org. Chem., 1981, 46, 2054.

9 A. R. Katritzky, G. R. Khan, D. E. Leahy and M. De Rosa, J. Org. Chem., 1984, 49, 4784.
10 P. G. Gassman, G. A. Campbell and G. Mehta, Tetrahedron, 1972, 28, 2749.
11 J. March, Advanced Organic Chemistry, 3rd edn., Wiley, New York, 1985, p. 974.
12 B. Staskun and S. S. Israelstam, J. Org. Chem., 1961, 26, 3191.
13 G. Fenton, C. G. Newton, B. M. Wyman, P. Bagge, D. I. Dron, D. Riddell and G. D. Jones, J. Med. Chem., 1989, 32, 265.

14 G. Heller and G. Fiesselmann, Justus Liebig's Ann. Chem., 1902, 324, 134.

15 B. Staskun and C. S. Foote, S. Afr. J. Chem., 1984, 37, 182.
16 C. Mentzer, D. Molho and Y. Berguer, Bull. Soc. Chim. Fr., 1950, 555.

17 T. L. Gilchrist, P. F. Gordon, D. F. Pipe and C. W. Rees, J. Chem. Soc., Perkin Trans. I, 1979, 2303.
18 D. R. Desai, V. S. Patel and S. R. Patel, J. Indian Chem. Soc., 1966, 43, 351.

19 A. I. Vogel, A Text Book of Quantitative Inorganic Analysis, 3rd edn., Longman and Green, London, 1961, p. 392.

Paper 2/04185E
Received 4th August 1992
Accepted 2nd November 1992

[^0]: \dagger Visiting Professor at the University of the Witwatersrand, 1990-1991.

[^1]: \ddagger A product described as 3,3,6-trichloro-3,4-dihydro-4-oxoquinoline has been reported (ref. 4). However, this assignment is now made doubtful in view of the high m.p. ($>320^{\circ} \mathrm{C}$), and properties (crystals; not affected by hot ethanol) which contrast markedly with those of compound $4 \mathbf{b}$.

[^2]: * This compound was originally ${ }^{1}$ assigned structure 7 b.

[^3]: * Number of chlorine atoms in molecular or fragment ion estimated from relative intensities of isotopic peaks.
 \dagger 'Old' (i.e., peroxide-containing) THF was utilized. The yield of product $\mathbf{4 b}$ appears to depend on the peroxide content of the solvent, and this aspect remains to be clarified. Hence, reaction in peroxide-free THF led to diminished yields of compound $\mathbf{4 b}$ and a concomitantly enhanced production of compound $\mathbf{6 b}$ and $\mathbf{7 b}$.

